Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E065-E070, 2023.
Article in Chinese | WPRIM | ID: wpr-987915

ABSTRACT

Objective To simultaneously collect and analyze the kinematic and dynamic parameters for two techniques of traditional Chinese cervical manipulation ( TCCM), and quantitatively describe its biomechanical characteristics. Methods A senior practitioner completed the TCCM (positioning and directional rotation pulling, lateral flexion, respectively) on 10 healthy subjects, and the fluorescent marker balls were pasted on the operator to capture manipulation movements. The dynamic parameters and the surface electromyography ( sEMG) signals were collected by pressure-sensitive gloves and wireless sEMG acquisition system. Results The upper arm muscle was the main force muscle during TCCM, and biceps brachii had the highest contribution rate. The range of motion (ROM), speed, pulling force, and time during cervical spine positioning and directional rotation pulling were all greater than those during cervical spine lateral flexion. The integrate electromyography ( iEMG) and root mean square (RMS) for each muscle of the operator during cervical spine positioning and directional rotation pulling were higher than those during cervical spine lateral flexion. Conclusions The overall ROM, three-dimensional (3D) motion angle, load intensity and time during CCTM have the characteristics of high speed, low amplitude and strong force, reflecting the biomechanical characteristics of ‘ cunjin ’ ( one-inch punch ) in traditional Chinese medicine. This study provides references for further standardizing manual teaching and training and improving clinical safety.

2.
Journal of Biomedical Engineering ; (6): 1238-1249, 2014.
Article in Chinese | WPRIM | ID: wpr-234423

ABSTRACT

A comprehensive, geometrically accurate, nonlinear C0-T1 three-dimensional finite element (FE) model was developed for the biomechanical study of human cervical spine and related disorders. The model was developed with anatomic detail from the computed tomography (CT) images of a 46-year-old female healthy volunteer, and applied the finite element model processing softwares such as MIMICS13.1, Hypermesh11.0, Abaqus 6.12-1, etc., for developing, preprocessing, calculating and analysing sequentially. The stress concentration region and the range of motion (ROM) of each vertebral level under axial rotation, flexion, extension, and lateral bending under physiologic static loadings were observed and recorded. The model was proven reliable, which was validated with the range of motion in previous published literatures. The model predicted the front and side parts of the foramen magnum and contralateral pedicle and facet was the stress concentration region under physiological loads of the upper spine and the lower spine, respectively. The development of this comprehensive, geometrically accurate, nonlinear cervical spine FE model could provide an ideal platform for theoretical biomechanical study of human cervical spine and related disorders.


Subject(s)
Female , Humans , Middle Aged , Biomechanical Phenomena , Cervical Vertebrae , Finite Element Analysis , Models, Biological , Range of Motion, Articular , Rotation
3.
Journal of Biomedical Engineering ; (6): 1123-1126, 2013.
Article in Chinese | WPRIM | ID: wpr-259755

ABSTRACT

Clinical advantages of Chinese spinal manipulation therapy (CSMT) were recognized for spinal chronic lesions of soft tissues and bones, such as cervical spondylosis, etc. However, the security of CSMT and the hypotheses of practice mechanisms were questioned for lacking of the relevant basic researches. Researches have proved that these methods could be used to observe the dynamic effects of spine with application of finite element analysis (FEA) computer technology. Combining with other biomechanical experimental methods and applying advanced FEA technology for mechanical problems of CSMT, we may not only find the mechanisms of action and provide theoretical supports for the traditional Chinese therapy, but also standardize the key techniques and optimize the treatment options improving clinical outcomes, and even promote spreading of CSMT. Computer models are ideally suited for studying phenomena that cannot be satisfactorily investigated with other models. However, computer models of CSMT practice remain to be further refined. The results which had been acquired so far not only verified some of the traditional points of view, but also revised and specified some perspectives of the past. This paper intends to review FEA studies with Chinese cervical manipulation therapy (CCMT) for cervical spinal chronic lesions of soft tissues and bones, involving different effects for cervical spine joints (pulling/traction and thrusting) with practice techniques and cervical spine soft tissues (including vessels and its hemodynamics, muscles and fasciae, etc).


Subject(s)
Humans , Biomechanical Phenomena , Cervical Vertebrae , Finite Element Analysis , Manipulation, Spinal , Methods , Spondylosis , Therapeutics
SELECTION OF CITATIONS
SEARCH DETAIL